A coil is connected to a voltmeter. A bar magnet, initially held above the coil, is left to fall into the coil. Explain why the voltmeter shows a reading. How will the reading of the voltmeter be affected if the magnet is dropped from a greater height?

As the bar magnet enters and exits the coil, there is a change in magnetic flux linkage through the coil. According to Faraday's law, an EMF is induced across the coil that is proportional to the rate of change of magnetic flux linkage. EMF=-N*dΦ/dt, where N is the number of turns of the coil, Φ is the magnetic flux and t is time. This EMF is measured by the voltmeter. If the magnet falls from a greater height, it will be accelerating downwards for a longer time. Thus, its speed will be greater when it reaches the coil. Hence, the rate of change of magnetic flux linkage in the coil will be greater. In other words, more magnetic field lines of the magnet will be cutting the coil per second. This will result in a greater induced EMF and the reading of the voltmeter will be greater.

AA
Answered by Andrea A. Physics tutor

10255 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

On a pirate ship, a 1.6m plank is held at one end to the ship. A 65kg pirate walks the plank with his 1.1kg parrot following 40cm behind him. What is the total clockwise moment acting on the plank when the pirate reaches the end of it?


Two students are provided with a starting pistol, a stopwatch and a long measuring tape. The starting pistol produces a loud sound and a puff of smoke. Describe how the students use the apparatus to calculate the speed of sound.


Draw a graph depicting a skydivers speed against time when jumping from a plane, until he deploys his parachute, explaining the logic of your answer through the forces applicable to the body.


What is thermionic emission?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning