A roller coaster car starts stationary at the top of a downwards slope. At the bottom of the slope, it has a speed of 30m/s. Use the conservation of energy to find the vertical height of the slope. (Use g=10 m/s^2)

From the conservation of energy, we know that the change in gravitational potential energy (GPE) is equal to the change in kinetic energy (KE). GPE=mgh and KE=(1/2)mv^2. At the top of the slope, the car starts stationary so has KE=0 and at the bottom of the slope GPE=0. Therefore the GPE at the top equals the KE at the bottom. mgh=(1/2)mv^2. Divide both sides by the mass (m) to get gh=(1/2)v^2 and rearrange to find h, h=v^2/2g. Substitute in the numbers to find h=45m (don't forget units!)

TM
Answered by Tamsin M. Physics tutor

3594 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Describe the kinetic model composition of a solid


A ball of mass 500g is dropped from rest 2m above the ground. When it reaches the ground it is travelling at 5m/s. How much energy has been dissipated?


An electric Iron rated at 2600 W contains a steel plate, heated to a working temperature of 215°C. Room temp=18°C. Deduce whether the plate could reach its working temperature in less than 1 minute. Mass (steel plate)=890g & C (steel)=450J/kg/K


A car of mass 1000 kg is travelling at 15 m/s. The driver applies the brakes for 4 seconds, slowing the car to 5 m/s. What is the average power output of the brakes over the 4 seconds? Assume there are no other forces acting on the car.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning