A roller coaster car starts stationary at the top of a downwards slope. At the bottom of the slope, it has a speed of 30m/s. Use the conservation of energy to find the vertical height of the slope. (Use g=10 m/s^2)

From the conservation of energy, we know that the change in gravitational potential energy (GPE) is equal to the change in kinetic energy (KE). GPE=mgh and KE=(1/2)mv^2. At the top of the slope, the car starts stationary so has KE=0 and at the bottom of the slope GPE=0. Therefore the GPE at the top equals the KE at the bottom. mgh=(1/2)mv^2. Divide both sides by the mass (m) to get gh=(1/2)v^2 and rearrange to find h, h=v^2/2g. Substitute in the numbers to find h=45m (don't forget units!)

Answered by Tamsin M. Physics tutor

2986 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Which of the following are magnetic materials? Copper, Cobalt, Carbon, Nickel


Can you explain the difference between a real and a virtual image?


If a 30N force is applied to a stationary object of mass 10kg, at what speed will the object accelerate?


A 950 kg car accelerates from 0 to 33 m/s in 11 seconds. a) Calculate the acceleration of the car b) Calculate the force needed to produce this acceleration c) The car claims a top speed of 110 miles/hr. Explain why there must be a top speed for any car


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences