Solve for x: logx(25) = log5(x)

logx(25) = log5(x)2logx(5) = log5(x)2/log5(x) = log5(x)2 = (log5(x))^2sqrt(2) = log5(x)x = 5^sqrt(2)

Related Maths A Level answers

All answers ▸

A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


Find an expression in terms of powers of cos(x) for cos(5x)


Why is the integral of a function the area?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences