Answers>Maths>IB>Article

Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.

Firstly, (x - c) is a factor of a polynomial P(x) if and only if there exists a polynomial Q(x) such that P(x) = (x - c)Q(x), where c is a real or complex constant.
Therefore, we can write: P(x) = x^3 + ax^2 - 7x + 6 = (x + 3)(ux^2 + vx + w), where u, v, and w are constants. Now, u = 1 and w = 2, which we find by equating coefficients when we expand the brackets on the R.H.S.
To find v, we expand the brackets to give:
x^3 + ax^2 - 7x + 6 = x^3 + 3x^2 + vx^2 + 3vx + 2x + 6 = x^3 + (3 + v)x^2 + (3v + 2)x + 6.
By equating coefficients we find that v = -3, and that a = 0. Hence, P(x) = x^3 - 7x + 6 = (x + 3)(x - 1)(x - 2).
Therefore: a = 0, and the other two factors of P(x) are (x - 1) and (x - 2).

Answered by Maths tutor

1510 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How to find a modulus and argument of w that is a quotient of z1 and z2 such that z1 = 1 + root(3)i and z2 = 1+ i using modulus-argument form?


Given that y = arcos(x/2) find dy/dx of arccos(x/2) and hence find the integral from 0 to 1 of arcos(x/2)dx


Given that sin(x) + cos(x) = 2/3, find cos(4x)


Let f(x)=x^2-ax+a-1 and g(x)=x-5. The graphs of f and g intersect at one distinct point. Find the possible values of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences