Where does the simple harmonic motion equation come from and what does it mean?

We know that the displacement, x, is described by the equation x = Acos(ωt + Φ), where A is the amplitude of oscillation, ω is the angular frequency and Φ is the phase shift. The velocity, v, is the time derivative of displacement (v = dx/dt), so differentiating both sides with respect to time t gives v = -ωAsin(ωt + Φ). The acceleration, a, is the time derivative of velocity (a = dv/dt), so differentiating both sides with respect to time again gives a = -ω2Acos(ωt + Φ) = -ω2x. This is the defining equation of simple harmonic motion: it states that the acceleration is proportional (since ω2 is a constant) and in the opposite direction (due to the negative sign) to the displacement.
This can be more easily visualised by sketching the curves for displacement, velocity and acceleration. Assuming the phase shift Φ = 0, the displacement x = Acos(ωt) and is described by a cosine curve. The velocity is described by an upside-down sine curve, and the acceleration is described by an upside-down cosine curve. So the acceleration curve is the same as the displacement curve, but reflected in the x-axis.

Related Physics A Level answers

All answers ▸

A fluorescent light uses a lining to emit visible light, explain why this is necessary and how it works.


What is the difference between a scalar and a vector? Give 3 examples of each.


Why do all objects fall at the same rate in a vacuum, independent of mass?


What is the Rutherford scattering experiment and what did it tell us about the nature of the atom?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences