Where does the simple harmonic motion equation come from and what does it mean?

We know that the displacement, x, is described by the equation x = Acos(ωt + Φ), where A is the amplitude of oscillation, ω is the angular frequency and Φ is the phase shift. The velocity, v, is the time derivative of displacement (v = dx/dt), so differentiating both sides with respect to time t gives v = -ωAsin(ωt + Φ). The acceleration, a, is the time derivative of velocity (a = dv/dt), so differentiating both sides with respect to time again gives a = -ω2Acos(ωt + Φ) = -ω2x. This is the defining equation of simple harmonic motion: it states that the acceleration is proportional (since ω2 is a constant) and in the opposite direction (due to the negative sign) to the displacement.
This can be more easily visualised by sketching the curves for displacement, velocity and acceleration. Assuming the phase shift Φ = 0, the displacement x = Acos(ωt) and is described by a cosine curve. The velocity is described by an upside-down sine curve, and the acceleration is described by an upside-down cosine curve. So the acceleration curve is the same as the displacement curve, but reflected in the x-axis.

Related Physics A Level answers

All answers ▸

Initially, trucks A and B are travelling in opposite directions. A has mass 1000 kg and is travelling at speed 7ms^-1. B has mass 4000kg and is travelling at speed 2ms^-1. What is their speed and direction after collision if they move together?


An engineering student found that the Youngs modulus of an alloy was 2.8 x 10^11 Pa. The 1.5m wire of the allow increased in length by 0.24% during an experiment. Calculate the stress on the wire.


Why does an electric drill heat up when passing through metal compared to in thin air?


Asteroid of mass 10^16 kg is travelling in the equatorial plane of Earth. It hits the surface at 45°. After the impact the day shortens by 1% (15 mins). How fast was the asteroid - comment? Neglect effects of atmosphere. Consider only inelastic collision.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences