How do I work out the equation of a tangent line to a curve?

A tangent line to a point of a curve is the straight line which is parallel to the the curve at that point.The equation of any straight line has equation form : y-y_1 = m(x-x_1) where m is the gradient of the line and (x_1,y_1) is ANY point on the linetherefore all we need to do is:find a point on the tangent line. Suppose we want to the find the equation of the tangent line to a curve at the point x=5. Then substitute x=5 in the equation of the curve and we have a point on the line!Calculate the gradient (slope) of the tangentThis is calculated by differentiating the equation of our curve then substituting the x-coordinate at which we wish the work out the tangent equationsubstitute m and (x_1, y_1) into the straight line equation and rearrange.

Related Maths A Level answers

All answers ▸

Express 1/(x(1-3x)) in partial fractions.


Prove cosec2A-cot2A=tanA


2 equations intersect each other, y = x + 2 and y = x^2. Find the area of the shaded region between the points of intersection giving your answer to 3 significant figures. (shaded region will be shown)


How do I find the stationary points of a curve?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences