How do I work out the equation of a tangent line to a curve?

A tangent line to a point of a curve is the straight line which is parallel to the the curve at that point.The equation of any straight line has equation form : y-y_1 = m(x-x_1) where m is the gradient of the line and (x_1,y_1) is ANY point on the linetherefore all we need to do is:find a point on the tangent line. Suppose we want to the find the equation of the tangent line to a curve at the point x=5. Then substitute x=5 in the equation of the curve and we have a point on the line!Calculate the gradient (slope) of the tangentThis is calculated by differentiating the equation of our curve then substituting the x-coordinate at which we wish the work out the tangent equationsubstitute m and (x_1, y_1) into the straight line equation and rearrange.

Answered by Maths tutor

3711 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If a 5 metre ladder is resting against a wall and the bottom of the ladder is 3 metres away from the wall, and someone pulls the bottom of the ladder away at a speed of 1 metre per second, calculate the speed of the top of the ladder after t seconds


solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2


Find the values of A between and including 0 and 360 degrees for tan(2A) = 3tan(A)


How do I integrate 3^x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning