How do I work out the equation of a tangent line to a curve?

A tangent line to a point of a curve is the straight line which is parallel to the the curve at that point.The equation of any straight line has equation form : y-y_1 = m(x-x_1) where m is the gradient of the line and (x_1,y_1) is ANY point on the linetherefore all we need to do is:find a point on the tangent line. Suppose we want to the find the equation of the tangent line to a curve at the point x=5. Then substitute x=5 in the equation of the curve and we have a point on the line!Calculate the gradient (slope) of the tangentThis is calculated by differentiating the equation of our curve then substituting the x-coordinate at which we wish the work out the tangent equationsubstitute m and (x_1, y_1) into the straight line equation and rearrange.

Answered by Maths tutor

3321 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for 0=<x<360 : 2((tanx)^2) + ((secx)^2) = 1


Using partial fractions, find f(x) if f'(x)=5/(2x-1)(x-3)


Solve algebraically: 2x - 5y = 11, 3x + 2y = 7


Two particles, A and B, are moving directly towards each other on a straight line with speeds of 6 m/s and 8 m/s respectively. The mass of A is 3 kg, and the mass of B is 2 kg. They collide to form a single particle of speed "v" m/s. Find v.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences