Ball P is shot at 18m/s horizontally from the top of a 32m mast. Ball Q is shot at 30m/s at an angle 'a' to the horizontal from the bottom of the mast. They collide mid-air. Prove that cos'a' = 3/5

Consider the positions of each ball as a function of time. Distance (position) is equal to velocity times time. We want 'cos' in the answer, so we'll work with the x axis. For ball P, the position is equal to 18t, since we are given the horizontal (x axis) velocity. For ball Q, the position is equal to the x component of its velocity, since it is shot at an angle 'a'. To find this we multiply the magnitude by cos'a', to get its x component. Then we can do the same, to work out its position as 30tcos'a'. When they collide, they are in the same x position at the same time, so we equate these two functions. 18t = 30tcos'a'. The t's cancel. Rearrange to get cos'a' = 18/30. This simplifies to cos'a' = 3/5

AF
Answered by Andrew F. Maths tutor

3393 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the function F(x)=17(x^4)+13(x^3)+12(x^2)+7x+2. A) differentiate F(x) B)What is the gradient at the point (2,440)


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


Evaluate f'(1) for the function f(x) = (x^2 + 2)^5


At t seconds, the temp. of the water is θ°C. The rate of increase of the temp. of the water at any time t is modelled by the D.E. dθ/dt=λ(120-θ), θ<=100 where λ is a pos. const. Given θ=20 at t=0, solve this D.E. to show that θ=120-100e^(-λt)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning