Solve the equations x-y=1 and 5x-3y=13

These equations are what we call 'simultaneous' which means they are solved together. To do this, we need to make one of the variables (x or y) the subject of either of the equations.Rearranging the first equation to make x the subject gives,x=1+y. This can then be substituted into the other equation, leaving an equation with only one variable, 5(1+y)-3y=13. This means that it can be simply solved through re-arrangement! Simplification gives 5+5y-3y=13, 5-2y=13, -2y=-8, y=4. Finally, this y value can be subbed into either of the original 2 equations to give x. Subbing it into the first equation gives x=1+y, x=1+4=5

Answered by Christopher K. Maths tutor

3625 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Tim stretches by leaning against a pole that is 1.5 metres tall and at a right angle to the floor. Tim is standing 0.5 metres away from the pole, how tall is Tim; leaving your answer in terms of metres? (2.d.p)


Expand (2x + 3)(x - 1)


Rearrange the formula to make 'y' the subject: x = (1 - 2y)/(3 +4y)


Find an expression for the nth term of this sequence: 3 - 11 - 19 - 27 - 35 . The nth term of a different sequence is 2n^3 + 3. Write down the first 3 terms of this sequence.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences