Solve the equations x-y=1 and 5x-3y=13

These equations are what we call 'simultaneous' which means they are solved together. To do this, we need to make one of the variables (x or y) the subject of either of the equations.Rearranging the first equation to make x the subject gives,x=1+y. This can then be substituted into the other equation, leaving an equation with only one variable, 5(1+y)-3y=13. This means that it can be simply solved through re-arrangement! Simplification gives 5+5y-3y=13, 5-2y=13, -2y=-8, y=4. Finally, this y value can be subbed into either of the original 2 equations to give x. Subbing it into the first equation gives x=1+y, x=1+4=5

CK
Answered by Christopher K. Maths tutor

4059 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f(x) = 3x - 2a || g(x) = 2ax + 1 || fg(x) = 2x + b/2


Solve the inequality 3x+7>x-3


How do I solve this linear equation? Angles A and B are in a quadrilateral are in ratio 2:3, angle C is 30 degrees more than angle B and angle D is 90 degrees.


Eleri invests £3700 for 3 years at 2% per annum compound interest. Calculate the value of her investment at the end of the 3 years. Give your answer correct to the nearest penny.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences