Solve the equations x-y=1 and 5x-3y=13

These equations are what we call 'simultaneous' which means they are solved together. To do this, we need to make one of the variables (x or y) the subject of either of the equations.Rearranging the first equation to make x the subject gives,x=1+y. This can then be substituted into the other equation, leaving an equation with only one variable, 5(1+y)-3y=13. This means that it can be simply solved through re-arrangement! Simplification gives 5+5y-3y=13, 5-2y=13, -2y=-8, y=4. Finally, this y value can be subbed into either of the original 2 equations to give x. Subbing it into the first equation gives x=1+y, x=1+4=5

Answered by Christopher K. Maths tutor

3995 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 2x + 10 = 4x + 6


Fully simplify this equation; 3x^3 - x(3x+36) = 0


How do you find the length of a side of a right-angled triangle given the angle and the hypotenuse?


A straight line L1 has equation y = 2x + 4. L2 is parallel to L1 and passes through the point (3,13). What is the equation of L2?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences