Solve the equations x-y=1 and 5x-3y=13

These equations are what we call 'simultaneous' which means they are solved together. To do this, we need to make one of the variables (x or y) the subject of either of the equations.Rearranging the first equation to make x the subject gives,x=1+y. This can then be substituted into the other equation, leaving an equation with only one variable, 5(1+y)-3y=13. This means that it can be simply solved through re-arrangement! Simplification gives 5+5y-3y=13, 5-2y=13, -2y=-8, y=4. Finally, this y value can be subbed into either of the original 2 equations to give x. Subbing it into the first equation gives x=1+y, x=1+4=5

Answered by Christopher K. Maths tutor

4000 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A metal sphere of radius 15cm is melted down and recast into a solid cylinder of radius 6cm. Calculate the height of the cylinder.


Solve the simultaneous equations: 5x + y = 21 and x - 3y = 9


What is 64^1/2 equal to?


How do you factorise the following quadratic: x^2 - 5*x - 14?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences