For the function f(x) = 4x^3 -3x^2 - 6x, find a) All points where df/dx = 0 and b) State if these points are maximum or minimum points.

Part a) requires you to find df/dx for the given function. To do this, we differentiate the function once, which is done by multiplying the power of each 'part' with the part itself and subtracting 1 from the power. So, 4x3 ---> 12x2 , -3x2 ---> -6x and -6x ---> -6, giving df/dx = 12x2 -6x -6.Then, we simply solve this to equal zero, which we can do through simplifying, then factorising: 12x2 -6x-6 = 0 ---> 2x2 -x -1 = 0 (2x +1)(x -1) = 0, therefore x = 1, x = -1/2 are both solutions to this. We then substitute these values into f(x) to determine our full coordinate values, giving our answer to part a) as (1, -5) and (-1/2, 7/4) Part b) asks for maxima and minima, requires us to find d2f/dx2 which can be found by differentiating df/dx using the same method as before. This gives us d2f/dx2 = 24x - 6. Now, a maximum point of a graph is when d2f/dx2 < 0, and a minima occurs when d2f/dx2 > 0. As such, we simply substitue the values we found from part a) into our new equation to determine our new answers: at x = 1, d2f/dx2 = 24 - 6 = 18 > 0, therefore x = 1 is a minima; at x = -1/2, d2f/dx2 = -12 -6 = -18 < 0, therefore x = -1/2 is a maxima.

MM
Answered by Martin M. Maths tutor

4063 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate sin^2(x) with respect to x


Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


The line l1 has equation y = −2x + 3. The line l2 is perpendicular to l1 and passes through the point (5, 6). (a) Find an equation for l2 in the form ax + by + c = 0, where a, b and c are integers.


A particle of weight 15N is resting on a plane inclined at an angle of 30°. Find : a) the normal force exerted on the particle, b) the coefficient of friction between the particle and the plane, providing it is in limiting equilibrium


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning