For the function f(x) = 4x^3 -3x^2 - 6x, find a) All points where df/dx = 0 and b) State if these points are maximum or minimum points.

Part a) requires you to find df/dx for the given function. To do this, we differentiate the function once, which is done by multiplying the power of each 'part' with the part itself and subtracting 1 from the power. So, 4x3 ---> 12x2 , -3x2 ---> -6x and -6x ---> -6, giving df/dx = 12x2 -6x -6.Then, we simply solve this to equal zero, which we can do through simplifying, then factorising: 12x2 -6x-6 = 0 ---> 2x2 -x -1 = 0 (2x +1)(x -1) = 0, therefore x = 1, x = -1/2 are both solutions to this. We then substitute these values into f(x) to determine our full coordinate values, giving our answer to part a) as (1, -5) and (-1/2, 7/4) Part b) asks for maxima and minima, requires us to find d2f/dx2 which can be found by differentiating df/dx using the same method as before. This gives us d2f/dx2 = 24x - 6. Now, a maximum point of a graph is when d2f/dx2 < 0, and a minima occurs when d2f/dx2 > 0. As such, we simply substitue the values we found from part a) into our new equation to determine our new answers: at x = 1, d2f/dx2 = 24 - 6 = 18 > 0, therefore x = 1 is a minima; at x = -1/2, d2f/dx2 = -12 -6 = -18 < 0, therefore x = -1/2 is a maxima.

Answered by Martin M. Maths tutor

3278 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


a) Simplify 2ln(2x+1) - 10 = 0 b) Simplify 3^(x)*e^(4x) = e^(7)


using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences