prove that any odd number squared is one more than a multiple of four.

any odd number can be written as (2n+1), where n is any integer (whole number). Squaring any odd number is therefore= (2n+1)2 . expanding the brackets gives =4n2+2n+2n+12 = 4n2+4n+1. factorising the 4 out of the first two terms gives =4(n2+n)+1. 4(n2+n) is a multiple of 4 due to the factored out 4, and the +1 after means that any odd number squared is one more than a multiple of 4.

Answered by Harry J. Maths tutor

2370 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out 1 1/5 ÷ 3/4. Give your answer as a mixed number in its simplest form.


Solve x^2 = 4(x-3)^2


The perimeter of a square is sqrt(120) cm, what is the area?


Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences