If I have the equation of a curve, how do I find its stationary points?

A stationary point is where the gradient of a curve momentarily stops changing.Let's take the example that we want to find the stationary points of the curve y=2x^5 - 5x^2. Find the derivative of the equation using the standard differentiation method. 2x^5 - 5x^2 would derive to 10x^4 - 10x. Then find the second derivative, by differentiating your first derivative in the same way. 10x^4 - 10x would become 40x^3 - 10. To find the stationary points, set the second derivative equal to 0, so in our example 40x^3 -10 = 0. Using this new equation, solve for x. In our case, solving for x gives us x^3=0.25 and therefore x=0.630 (3.s.f). If the question asks for it, you may need to find the y-coordinate by substituting the x-value back into the original equation- in this case we get y=1.789 (3.s.f).

DP
Answered by Darshan P. Maths tutor

4385 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3


A curve has the equation y = (x^2 - 5)e^(x^2). Find the x-coordinates of the stationary points of the curve.


Express x^2 - 7x + 2 in the form (x - p)^2 + q , where p and q are rational numbers.


Curve C has equation y=(9+11x)/(3-x-2x^2). Find the area of the curve between the interval (0, 1/2). State your answer in exact terms.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning