If I have the equation of a curve, how do I find its stationary points?

A stationary point is where the gradient of a curve momentarily stops changing.Let's take the example that we want to find the stationary points of the curve y=2x^5 - 5x^2. Find the derivative of the equation using the standard differentiation method. 2x^5 - 5x^2 would derive to 10x^4 - 10x. Then find the second derivative, by differentiating your first derivative in the same way. 10x^4 - 10x would become 40x^3 - 10. To find the stationary points, set the second derivative equal to 0, so in our example 40x^3 -10 = 0. Using this new equation, solve for x. In our case, solving for x gives us x^3=0.25 and therefore x=0.630 (3.s.f). If the question asks for it, you may need to find the y-coordinate by substituting the x-value back into the original equation- in this case we get y=1.789 (3.s.f).

DP
Answered by Darshan P. Maths tutor

4327 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the cubic function f(x) = x^3 - 7x - 6 has a root x = -1 and hence factorise it fully.


Using the substitution of u=6x+5 find the value of the area under the curve f(x)=(2x-3)(6x+%)^1/2 bounded between x=1 and x=1/2 to 4 decimal places.


How do I differentiate (x^2 + 3x + 3)/(x+3)


What is a radian?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning