If I have the equation of a curve, how do I find its stationary points?

A stationary point is where the gradient of a curve momentarily stops changing.Let's take the example that we want to find the stationary points of the curve y=2x^5 - 5x^2. Find the derivative of the equation using the standard differentiation method. 2x^5 - 5x^2 would derive to 10x^4 - 10x. Then find the second derivative, by differentiating your first derivative in the same way. 10x^4 - 10x would become 40x^3 - 10. To find the stationary points, set the second derivative equal to 0, so in our example 40x^3 -10 = 0. Using this new equation, solve for x. In our case, solving for x gives us x^3=0.25 and therefore x=0.630 (3.s.f). If the question asks for it, you may need to find the y-coordinate by substituting the x-value back into the original equation- in this case we get y=1.789 (3.s.f).

Answered by Darshan P. Maths tutor

3796 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is fired from a cannon at 20m/s at an angle of 56degrees to the horizontal. Calculate the horizontal distance the ball travels as well as its maximum height reached.


Find all solutions of the equation in the interval [0, 2π]. 5 cos^3 x = 5 cos x


How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0 (a) Find (i) dy/d x (ii) d^2y/dx^2 (b) Verify that C has a stationary point when x = 4 (c) Determine the nature of this stationary point, giving a reason for your answer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences