In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M= 300e^-0. 5t

The initial mass is found by putting t=0 into the given equation, so the initial mass is 300g. When the mass has decreased to half its value, M=150g. This gives us 150=300e^-0.05t, so e^-0.05t=1/2. Natural log of both sides and re-arranging for t gives t=-ln(1/2)/0.05=13.9 minutes.

Answered by Theo T. Maths tutor

5691 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°


How do you integrate (sinx)^2?


Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.


Find the set of values of x for which 3x^2+8x-3<0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences