given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)

y-1 dy = xcos(x) dx∫y-1dy = ∫xcos(x) dx ln(y) = ∫xcos(x) dx [using integration by parts to integrate the right hand side] therefore, ln(y) = xsin(x) - ∫sin(x) dxln(y) = xsin(x) + cos(x) + cat y = 1, x = π, therefore, ln(1) = πsin(π) + cos(π) + c0 = 0 - 1 + c therefore, c = 1hence ln(y) = xsin(x) + cos(x) + 1finally, y = exsin(x) + cos(x)+1

AS
Answered by Abhiparth S. Maths tutor

4238 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate e^x cos x


Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0


Write (3 + 2√5)/(7 + 3√5) in the form a + b√5


A curve has parametric equations x=t(t-1), y=4t/(1-t). The point S on the curve has parameter t=-1. Show that the tangent to the curve at S has equation x+3y+4=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning