given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)

y-1 dy = xcos(x) dx∫y-1dy = ∫xcos(x) dx ln(y) = ∫xcos(x) dx [using integration by parts to integrate the right hand side] therefore, ln(y) = xsin(x) - ∫sin(x) dxln(y) = xsin(x) + cos(x) + cat y = 1, x = π, therefore, ln(1) = πsin(π) + cos(π) + c0 = 0 - 1 + c therefore, c = 1hence ln(y) = xsin(x) + cos(x) + 1finally, y = exsin(x) + cos(x)+1

Answered by Abhiparth S. Maths tutor

3697 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line L has equation 7x - 2y + 11 = 0, Find the gradient of l


Integrate (1 - x^2)^(-0.5)dx within the limits 0 and 1


Prove the identity: sin^2(x)+cos^2(x) = 1


Differentiate with respect to x: 3 sin^2 x + sec 2x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences