Prove by induction that f(n) = 2^(k + 2) + 3^(3k + 1) is divisible by 7 for all positive n.

First we establish our base case: f(0) = 22 + 31 = 4 + 3 = 7, so clearly f(0) is divisible by 7.Now. by the inductive hypothesis. we assume that f(k) is divisible by 7, and attempt to show that this implies f(k+1) is also divisible by 7.f(k + 1) = 2k + 3 + 32(k + 1) + 1 = 2k + 3 + 32k + 3 = 2 * 2k + 2 + 9 * 32k + 1 So f(k + 1) mod 7 === 2 * 2k + 2 + 2 * 32k + 1 (since 9 mod 7 === 2). So f(k + 1) mod 7 === 2 * (2k + 2 + 32k + 1) = 2 * f(k).These for f(k + 1) mod 7 === 0, hence f(k + 1) is divisible by 7 if f(k) is divisible by 7, hence f(n) is divisibile by 7 for all n >= 0.

WP
Answered by William P. Further Mathematics tutor

3083 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A particle is moving in a straight line with simple harmonic motion. The period of the motion is (3pi/5)seconds and the amplitude is 0.4metres. Calculate the maximum speed of the particle.


Integrate f(x) = 1/(1-x^2)


You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


How do I express complex numbers in the form reiθ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning