Prove by induction that f(n) = 2^(k + 2) + 3^(3k + 1) is divisible by 7 for all positive n.

First we establish our base case: f(0) = 22 + 31 = 4 + 3 = 7, so clearly f(0) is divisible by 7.Now. by the inductive hypothesis. we assume that f(k) is divisible by 7, and attempt to show that this implies f(k+1) is also divisible by 7.f(k + 1) = 2k + 3 + 32(k + 1) + 1 = 2k + 3 + 32k + 3 = 2 * 2k + 2 + 9 * 32k + 1 So f(k + 1) mod 7 === 2 * 2k + 2 + 2 * 32k + 1 (since 9 mod 7 === 2). So f(k + 1) mod 7 === 2 * (2k + 2 + 32k + 1) = 2 * f(k).These for f(k + 1) mod 7 === 0, hence f(k + 1) is divisible by 7 if f(k) is divisible by 7, hence f(n) is divisibile by 7 for all n >= 0.

Related Further Mathematics A Level answers

All answers ▸

y = artanh(x/sqrt(1+x^2)) , find dy/dx


How far is the point (7,4,1) from the line that passes through the points (6,4,1) and (6,3,-1)?


Given a curve with parametric equations, x=acos^3(t) and y=asin^3(t), find the length of the curve between points A and B, where t=0 and t=2pi respectively.


Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences