A cubic polynomial has the form p(z)=z^3+bz^2+cz+d, z is Complex and b, c, d are Real. Given that a solution of p(z)=0 is z1=3-2i and that p(-2)=0, find the values of b, c and d.

I will explain this choice of question and demonstrate my approach of showing the most forward way to solve this in the interview.

Answered by Maths tutor

3770 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If a 5 metre ladder is resting against a wall and the bottom of the ladder is 3 metres away from the wall, and someone pulls the bottom of the ladder away at a speed of 1 metre per second, calculate the speed of the top of the ladder after t seconds


Differentiate the following: 4x^3 + sin(x^2)


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


Find the value of cot(π/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning