How do I determine whether a system of 3 linear equations is consistent or not?

First, form the system into a 3x3 matrix using the coefficients. Find the determinant of this matrix.If the determinant =/= 0, then the matrix is singular and has a unique solution. The system is consistent and the planes coincide at a point.
If the determinant is 0, then the matrix is non-singular, so use simultaneous equations to attempt to solve the system:
If the system contains 3 equations that are multiples of each other, then the system is consistent and represent a single plane.
If the resolved system gives a redundant equation after elimination/substitution, then the system is consistent and represents a sheaf. The planes coincide at a line.
In all cases where the system is consistent, the system can be resolved to give a set of solutions, whether that be a single point, a line or a plane.

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of the second order differential equation y''(t)+y(t) = 5exp(2t)


Sketch the curve y= ((3x+2)(x-3))/((x-2)(x+1)) and find values of y for which y>=3


How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i


Show that cosh^2(x)-sinh^2(x)=1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences