The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.

In the case c2>4mk, the characteristic equation has two distinct real roots; this represents overdamping. The system does not oscillate, and x approaches zero as time approaches infinity.In the case c2=4mk, the characteristic equation has a repeated real root; this represents critical damping. The system does not oscillate and returns to its equilibrium position in the shortest possible time; x approaches zero as time approaches infinity.In the case c2<4mk, the characteristic equation has two complex routes; this represents underdamping. The system oscillates with an exponentially decreasing amplitude; the amplitude of oscillations approaches zero as time approaches infinity.

OG
Answered by Oliver G. Further Mathematics tutor

12806 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


Solve the following inequality: 2x^2 < x+3


Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


Find the reflection of point P(2,4,-6) in the plane x-2y+z=6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning