Why do I need to add the + C when finding an indefinite integral?

When you differenciate a function, the constant term turns to 0. So a lot of different functions like x2 + 7 and x2 - 3 will have the same derivative, this means that going from the derivative to the original function we can only get the non constant terms right and therefore we must add a + C. If the integral is definite then we don't need the + C because by evaluating the difference when plugging the limits, we get F(top limit) + C - (F(bottom limit) + C) = F(top) - F(bottom) where F(x) is the integrated function.

Related Maths A Level answers

All answers ▸

When you are working out dy/dx = 0, why do you do this and what does it mean?


A hollow sphere of radius r is being filled with water. The surface area of a hemisphere is 3pi*r^2. Question: When the water is at height r, and filling at a rate of 4cm^3s^-1, what is dS/dT?


integrate 6x^2


How do I know if I am using the right particular integral when solving a differential equation


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences