Solve the equation 2(Sinhx)^2 -5Coshx=5, giving your answer in terms of natural logarithm in simplest form

It doesn't hurt to write down the equation again, so let's do so. Equation: 2(Sinhx)2 - 5Coshx = 5 . Hmm, we don't really like to do maths with two different trig functions, why don't we see if we can recall a trig identity to help us. What about (Sinhx)2= (Coshx)2- 1? Well, plugging it in gives you 2(Coshx)2 - 5Coshx - 7 = 0. Aha! A quadratic in Coshx! We can see this clearly using c = Coshx and it helps simplify our working out a bit (we get 2c2 - 5c -7 = 0) . Quadratics are easier to solve than trig equations, we just need to use the quadratic formula. This gives c = [5 (+-) sqrt(52 - 4*2(-7))]/4 , c = 7/2, -1, but wait c cannot equal to -1? How do we know this? Well try sketching a graph of Coshx (Remember: Coshx =1/2 (ex +e-x). Now it's just a simple matter of using the arcosh formula, arcoshx = ln(x(+-)sqrt(x2-1)). So we have x = ln(7/2 (+-) 3(sqrt5)/2), not the prettiest answer, but they rarely are!

Related Further Mathematics A Level answers

All answers ▸

Differentiate: y=x^x


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


Show that the matrix A is non-singular for all real values of a


Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences