If n is an integer prove (n+3)^(2)-n^(2) is never even.

Let us begin by simplifying the expression:(n+3)2 - n2 = (n+3)(n+3) - n2= n2 + 6n + 9 - n2 (expanded brackets)= 6n + 9 (collected like terms)= 3(2n+3) (taken out a factor of 3)Now we can consider this simpler equivalent expression.3 is an odd number2n is even thus 2n+3 is odd (even plus odd is always odd)so we have an odd*odd which is always odd, thus never even and we are done.

HK
Answered by Hugh K. Maths tutor

6609 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx when y = 5x^6 + 4x*sin(x^2)


Solve the inequality (9x+5)/12 > (4x+1)/3


A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).


Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning