If n is an integer prove (n+3)^(2)-n^(2) is never even.

Let us begin by simplifying the expression:(n+3)2 - n2 = (n+3)(n+3) - n2= n2 + 6n + 9 - n2 (expanded brackets)= 6n + 9 (collected like terms)= 3(2n+3) (taken out a factor of 3)Now we can consider this simpler equivalent expression.3 is an odd number2n is even thus 2n+3 is odd (even plus odd is always odd)so we have an odd*odd which is always odd, thus never even and we are done.

HK
Answered by Hugh K. Maths tutor

6244 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using transformation rules and your knowledge of trigonometric functions, draw the graph y=2sin(2x)


The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


Find the set of values for which: x^2 - 3x - 18 > 0


How do I find the equation of the tangent of a curve at a specific point.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences