What is greater e^pi or pi^e?

Let a^b >b^a, then blna>alnb, (lna)/a > (lnb)/b, Thus we graph the function (lnx)/x, We can see that this tends towards 0 as x tends towards infinity. We can also see that it is increasing from x=0 to a certain value of x. We can then find the maximum value of our function by finding the derivative. By using the product rule and setting our derivative to 0, we find x=e. Therefore (lne)/e>(lnb)/b for any b>0. Thus blne>elnb, e^b>b^e e^pi>pi^e

QED

Answered by Maths tutor

3442 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following: y=sin(x^2+2)


How do I differentiate an algebraic expression? (e.g. y=3x^4 - 8x^3 - 3) [the ^ represents x being raised to a power]


How do you find a turning point of a function using differentiation?


What are the necessary conditions for a random variable to have a binomial distribution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning