What is greater e^pi or pi^e?

Let a^b >b^a, then blna>alnb, (lna)/a > (lnb)/b, Thus we graph the function (lnx)/x, We can see that this tends towards 0 as x tends towards infinity. We can also see that it is increasing from x=0 to a certain value of x. We can then find the maximum value of our function by finding the derivative. By using the product rule and setting our derivative to 0, we find x=e. Therefore (lne)/e>(lnb)/b for any b>0. Thus blne>elnb, e^b>b^e e^pi>pi^e

QED

Answered by Maths tutor

3078 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the parametric equations x=4t+3 and y+ 4t +8 +5/(2t). Find the value of dy/dx at the point on curve C where t=2.


A line has an equation y = e^(2x) - 10e^(x) +12x, find dy/dx


Find the coordinates of the stationary point on the curve y=2x^2+3x+4=0


Why is the differential of a constant zero?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences