Curve C has equation 4x^2- y^3 - 4xy +2^y = 0 , point P (-2, 4) lies on C, find dy/dx at the point P

Use implicit differentiation 1) 8x - 3y^2dy/dx - 4y - 4xdy/dx +2^y*ln2 * dy/dx = 0 You then sub in the points P (-2,4) 2) 8(-2) - 3(4)^2 *dy/dx - 4(4) - 4(-2) *dy/dx + 2^(4) *ln2 * dy/dx = 0 Rearrange to get dy/dx on the LHS3) dy/dx = 32 / (-40 + 16ln2)

FF
Answered by Fernando F. Maths tutor

3794 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the centre of the circle with equation: x^2 + y^2 − 2*x + 14*y = 0


y=4x^3+6x+3 so find dy/dx and d^2y/dx^2


Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2


Given that Y=(x+3)(x+5); find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning