Find the x-coordinates of any stationary points of the equation y = x^3 - 2x + 4/x

y = x^3 - 2x +4/x, dy/dx = 3x^2 - 2 - 4/(x^2) = 0 at the stationary points, 3x^4 - 2x^2 - 4 = 0, substitute in u for x^2: 3u^2 - 2u - 4 = 0, use the quadratic formula: u = (-(-2) +- sqrt((-2)^2 - 43(-4)))/2*3 = (2 +- sqrt(52))/6 = (1 +- sqrt(13))/3 = x^2, because 1-sqrt(13) < 0, the only real solutions for x are from x^2 = (1+sqrt(13))/3, x = +- sqrt((1+sqrt(13))/3)

Related Maths A Level answers

All answers ▸

A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).


Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1


Using implicit differentiation, write the expression "3y^2 = 4x^3 + x" in terms of "dy/dx"


Find the co ordinates and nature of the turning points of the curve C withe equation, y=2x^3-5x^2-4x+2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences