Find the x-coordinates of any stationary points of the equation y = x^3 - 2x + 4/x

y = x^3 - 2x +4/x, dy/dx = 3x^2 - 2 - 4/(x^2) = 0 at the stationary points, 3x^4 - 2x^2 - 4 = 0, substitute in u for x^2: 3u^2 - 2u - 4 = 0, use the quadratic formula: u = (-(-2) +- sqrt((-2)^2 - 43(-4)))/2*3 = (2 +- sqrt(52))/6 = (1 +- sqrt(13))/3 = x^2, because 1-sqrt(13) < 0, the only real solutions for x are from x^2 = (1+sqrt(13))/3, x = +- sqrt((1+sqrt(13))/3)

Answered by Maths tutor

3157 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you tell if a function is even or odd?


Find the x value of the stationary points of the graph y = x^2e^x


(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


Find (dy/dx) of x^3 - x + y^3 = 6 + 2y^2 in terms of x and y


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences