Find the x-coordinates of any stationary points of the equation y = x^3 - 2x + 4/x

y = x^3 - 2x +4/x, dy/dx = 3x^2 - 2 - 4/(x^2) = 0 at the stationary points, 3x^4 - 2x^2 - 4 = 0, substitute in u for x^2: 3u^2 - 2u - 4 = 0, use the quadratic formula: u = (-(-2) +- sqrt((-2)^2 - 43(-4)))/2*3 = (2 +- sqrt(52))/6 = (1 +- sqrt(13))/3 = x^2, because 1-sqrt(13) < 0, the only real solutions for x are from x^2 = (1+sqrt(13))/3, x = +- sqrt((1+sqrt(13))/3)

Related Maths A Level answers

All answers ▸

Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.


Make x the subject of the equation: 5x+1 = 2-4x


integrate 1/((1-x^2)^0.5) between 0 and 1


Given y =( 2x+1 )^0.5 and limits x = 0 , x = 1.5 , find the exact volume of the solid generated when a full rotation about the x-axis .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences