Show that x^2+6x+11 can be written in as (x+p)^2+q, where p and q are integers to be found.

To start, we need to complete the square of the equation. To do this, we divide the coefficient of x by 2. Here, 6/2=3. We then find (x+3)^2, which gives us the first part of the equation we want to express, but also leaves us with something extra. Expanding out (x+3)^2 gives us x^2+6x+9. Here we have what we were trying to express but with the extra part 9, so we can write (x^2+6x)=(x+3)^2-9.
Substituting this back into our original equation, we have (x+3)^2-9+11, which equals (x+3)^2+2.Therefore, p=3, q=2.

Answered by Hannelore E. Maths tutor

8650 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


What is dy/dx when y=ln(6x)?


y = 4x / (x^2 + 5). Find dy/dx.


Find the first and second derivative of f(x) = 6/x^2 + 2x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences