Show that x^2+6x+11 can be written in as (x+p)^2+q, where p and q are integers to be found.

To start, we need to complete the square of the equation. To do this, we divide the coefficient of x by 2. Here, 6/2=3. We then find (x+3)^2, which gives us the first part of the equation we want to express, but also leaves us with something extra. Expanding out (x+3)^2 gives us x^2+6x+9. Here we have what we were trying to express but with the extra part 9, so we can write (x^2+6x)=(x+3)^2-9.
Substituting this back into our original equation, we have (x+3)^2-9+11, which equals (x+3)^2+2.Therefore, p=3, q=2.

HE
Answered by Hannelore E. Maths tutor

9503 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

"Why is Mathematics important, I wont use any of it when I start work?"


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


Differentiate xe^2


Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning