Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.

(a) We have f(x)=(2/3)x3+ bx2 + 2x +3. First we have to solve for f'(x)=(dy/dx)f(x) which gives:f'(x) = [(32)/3]x2 + 2bx + 2 <=> f'(x)=2x2+ 2bx + 2 From there we do a second differentiation to solve for f''(x)=(dy/dx)f'(x) which gives:f''(x)= 4x + 2b Thus we have that f'(x)=2x2+ 2bx + 2 and f''(x)= 4x + 2b
(b) Since we know that f(x) has a stationary point at x=2, this implies that f'(x=2)=0, thus we have:f'(x=2)=2
22+2b*2+2 = 0 <=> f'(2) = 8 + 4b + 2 = 0 <=> f'(2) = 10 + 4b = 0, so rearranging to solve for b we get:10 + 4b = 0 <=> 10 = - 4b <=> b = - 10/4 which finally simplifies (if divided by 2) to:b = - 5/2

Related Maths A Level answers

All answers ▸

How do I multiply two matrices together?


Express 2Cos(a) - Sin(a) in the form RCos(a+b) Give the exact value of R and the value of b in degrees to 2 d.p.


How do I differentiate implicitly?


There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences