Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.

(a) We have f(x)=(2/3)x3+ bx2 + 2x +3. First we have to solve for f'(x)=(dy/dx)f(x) which gives:f'(x) = [(32)/3]x2 + 2bx + 2 <=> f'(x)=2x2+ 2bx + 2 From there we do a second differentiation to solve for f''(x)=(dy/dx)f'(x) which gives:f''(x)= 4x + 2b Thus we have that f'(x)=2x2+ 2bx + 2 and f''(x)= 4x + 2b
(b) Since we know that f(x) has a stationary point at x=2, this implies that f'(x=2)=0, thus we have:f'(x=2)=2
22+2b*2+2 = 0 <=> f'(2) = 8 + 4b + 2 = 0 <=> f'(2) = 10 + 4b = 0, so rearranging to solve for b we get:10 + 4b = 0 <=> 10 = - 4b <=> b = - 10/4 which finally simplifies (if divided by 2) to:b = - 5/2

Answered by Maths tutor

3388 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (sin(x))^6 - Further mathematics (De Moivre's theorem)


A fair die has six faces numbered 1, 1, 1, 2, 2, and 3. The die is rolled twice and the number showing on the uppermost face is recorded. Find the probability that the sum of the two numbers is at least three.


Points A and B have coordinates (–2, 1) and (3, 4) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as 5x +3 y = 10.


Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning