5.00 g of copper(II) carbonate decomposes to form copper(II) oxide and carbon dioxide: CuCO3(g) → CuO(s) + CO2(g). Calculate the maximum mass of carbon dioxide that can be produced. (Mr of CuCO3 = 123.5, Mr of CO2 = 44.0)

Moles of CuCO3 (using triangle) = 5.00/123.5 = 0.0450 mol.1 mol of CuCO3 makes 1 mol of CO2, therefore 0.0450 mol of CuCO3 makes 0.0450 mol of CO2.Using the triangle, mass of CO2 = 44 x 0.0450 = 1.78 grams

CB
Answered by Clemmie B. Chemistry tutor

10690 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

What factors increase rate of reaction? (For a reaction between two reagents in solution)


write a balanced equation of the reaction between sodium and oxygen


Given the balanced equation: MgCO3 + 2HCl --> MgCl2 + H2O + CO2, if 5 grams of MgCO3 is used, what volume of CO2 is produced? (molar mass of MgCO3 is 84.3 g/mol)


Explain the factors that increase the rate of a reaction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning