5.00 g of copper(II) carbonate decomposes to form copper(II) oxide and carbon dioxide: CuCO3(g) → CuO(s) + CO2(g). Calculate the maximum mass of carbon dioxide that can be produced. (Mr of CuCO3 = 123.5, Mr of CO2 = 44.0)

Moles of CuCO3 (using triangle) = 5.00/123.5 = 0.0450 mol.1 mol of CuCO3 makes 1 mol of CO2, therefore 0.0450 mol of CuCO3 makes 0.0450 mol of CO2.Using the triangle, mass of CO2 = 44 x 0.0450 = 1.78 grams

CB
Answered by Clemmie B. Chemistry tutor

8738 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

Aspirin C9H8O4 is made when salicylic acid C7H6O3 reacts with ethanoic anhydride C4H6O3 . The equation for this reaction is: C7H6O3 + C4H6O3 → C9H8O4 + CH3COOH Calculate the maximum mass of aspirin that could be made from 100 g of salicylic acid.


0.0960g of Magnesium was reacted with 25cm^3 of HCL of 0.4mol/dm^3 concentration. Calculate the moles of each one and determine which one is in excess


How can work out the number of protons, neutrons and electrons in this atom of an element?


Describe what is meant by a saturated hydrocarbon. (2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences