Find the tangent to the curve y=(3/4)x^2 -4x^(1/2) +7 at x=4, expressing it in the form ax+by+c=0.

In general, the equation of a line is y-y0=m(x-x0), where m is the gradient and (x0,y0) is a point on the line. We need to find the gradient and a point on our tangent. Step 1: Find gradient. Since our tangent is at x=4 of the curve, we know it has the same gradient as the curve at x=4. dy/dx= (3/2)x-2x^(-1/2). Therefore, by substituting x=4 into dy/dx we see that the gradient at x=4 is (3/2)(4)-2(4)^(-1/2)=5 Step 2: Find (x0,y0)As the tangent passes the curve at x=4, it must contain the corresponding y coordinate at x=4. Set x=4 into equation of curve and we obtain y= =(3/4)(4)^2 -4(4)^(1/2) +7 = 11. So (x0,y0) = (4,11) Step 3: Equation of tangent. Set the above into y-y0 = m(x-x0) à y-11=5(x-4) By expanding we then find that the equation of the tangent is 5x-y-9=0 where a=5, b=-1 and c=-9

Answered by Eleni P. Maths tutor

2544 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^3+ 7x-ln(2)


Differentiate: y = 3x^2 + 4x + 1 -4x^-1


What are differences between speed and velocity, velocity and speed and acceleration?


The straight line L1 passes through the points (–1, 3) and (11, 12). Find an equation for L1 in the form ax + by + c = 0, where a, b and c are integers


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences