Solve the quadratic inequality: x^2 - 5x + 4 < 0

x2-5x+4 <0First we ignore the inequality and try to solve the equation x2-5x+4=0, which we do via factorising (x-4)(x-1)=0. x = 4 or x=1We draw the graph using our solution, going through the points on the x axis.We look at where the graph goes underneath the x axis; this is the region where the graph is <0 because the y values are less than 0.The values of x for which the graph goes underneath the x axis is the solution. This is between x=1 and x=4. We write this as 1<x<4, remembering the strict inequality because the question uses a strict inequality. We mustn't deviate from the form of the inequality set by the Q.Problem solved!

HH
Answered by Hariz H. Maths tutor

10749 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


A curve has the equation (x+y)^2 = xy^2. Find the gradient of the curve at the point where x=1


What is the value of sin(theta), cos(theta), tan(theta) where theta = 0, 30, 45, 60, 90


Fnd ∫x^2e^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences