use the substitution u=2+ln(x) to show that int(e,1(ln(x)/x(2+ln(x)^2))dx)=p+ln(q) , where p and q are rational numbers.

So u=2+lnx, therefore du/dx=1/x , we can work out the new upper and new lower limit by substitute in e and 1 into 2+lnx , and we get 2+ln(e)=3 , 2+ln(1)=2Rearrange the differential we get dx=xdu , substitute u and dx and the equation becomes xln(x)/x(u)^2 , top and bottom xs cancel and with the top being ln(x) and u=2+ln(x) , we can also substitute the top with u-2 .we can now intergrate this as (u-2)/(u^2)with the limits being 3 and 2.we get a result of lnu+(2/u) , substitute in 3 and 2 and the final result is -1/3+ln(3/2).

Answered by Maths tutor

5210 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The circle (x-3)^2 +(x-2)^2 = 20 has centre C. Write down the radius of the circle and the coordinates of C.


The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


If I have the equation of a curve, how do I find its stationary points?


How do I find the angle between a vector and a plane in cartesian form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning