Find the equation of the tangent to the circle (x-3)^2 + (y-4)^2 = 13 that passes through the point (1,7)

Start with a sketch. We can see that the radius from the point (1,7) to the centre of the circle (3,4) is perpendicular to the tangent. The gradient of the radius is (4-7)/(3-1) = -3/2. We know that two perpendicular gradients multiply to make -1, so the gradient, m, of the tangent is 2/3.
The equation of the tangent is now y=2/3x + c . To find c, all we have to do is plug in a coordiante for x and y - we know (1,7) lies on the tangent so we will use this. Therefore c=19/3. The equation of our tangent is therefore y=2/3 x + 19/3 !

Answered by Maths tutor

3435 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 6x^2+2x+1 by first principles, showing every step in the process.


y = 1/x^2, differentiate y (taken from AQA 2018 past paper)


Differentiate y = arcsin(x) with respect to x


Use implicit differentiation to find dy/dx of: 2(x^2)y + 2x + 4y - cos((pi)y) = 17


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning