Find the equation of the tangent to the circle (x-3)^2 + (y-4)^2 = 13 that passes through the point (1,7)

Start with a sketch. We can see that the radius from the point (1,7) to the centre of the circle (3,4) is perpendicular to the tangent. The gradient of the radius is (4-7)/(3-1) = -3/2. We know that two perpendicular gradients multiply to make -1, so the gradient, m, of the tangent is 2/3.
The equation of the tangent is now y=2/3x + c . To find c, all we have to do is plug in a coordiante for x and y - we know (1,7) lies on the tangent so we will use this. Therefore c=19/3. The equation of our tangent is therefore y=2/3 x + 19/3 !

Answered by Maths tutor

3489 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation: e^(2y) * (dy/dx) + tan(x) = 0, given that y = 0 when x = 0. Give your answer in the form y = f(x).


Given y= sqrt(x) + 4/sqrt(x) + 4 , find dy/dx when x=8 giving your answer in form Asqrt(2) where A is a rational number.


How to solve pully type questions in mechanics


Given that 2cos(x+50)°=sin(x+40)° show tan x° = tan 40°/3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning