Find the equation of the tangent to the circle (x-3)^2 + (y-4)^2 = 13 that passes through the point (1,7)

Start with a sketch. We can see that the radius from the point (1,7) to the centre of the circle (3,4) is perpendicular to the tangent. The gradient of the radius is (4-7)/(3-1) = -3/2. We know that two perpendicular gradients multiply to make -1, so the gradient, m, of the tangent is 2/3.
The equation of the tangent is now y=2/3x + c . To find c, all we have to do is plug in a coordiante for x and y - we know (1,7) lies on the tangent so we will use this. Therefore c=19/3. The equation of our tangent is therefore y=2/3 x + 19/3 !

Related Maths A Level answers

All answers ▸

Use the substitution u=1+e^x to find the Integral of e^(3x) / (1 + e^x)


What are logarithms and how do you manipulate them?


(C3) Show that 4csc^2(x) - cot^2(x) = k can be expressed as sec^2(x) = (k-1)/(k-4) where k != 4


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences