Find the turning point(s) of the following function f(x) = x^2-2x+4. Determine whether the turning point is a minimum or maximum.

Differentiate f(x) with respect to x.You get f'(x) = 2x - 2Turning points occur when the derivative of f(x) = 0. In other words, when f'(x) = 0. This occurs when x=1.Now to determine if maximum or minimum, find f''(x) by differentiating f'(x) wrt x. f''(x) = 2. Since 2 is greater than 0, we know from theory that this point must be a minimum.

Answered by Maths tutor

4312 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for x: logx(25) = log5(x)


How do I show two lines are skew?


Prove the identity: sin^2(x)+cos^2(x) = 1


A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning