Differentiate and then integrate: x^2 + 3x

To differentiate, the rule is to bring the power down to the front and multiply the expression, then take one off the value of the power, for example: d/dx(x2) = (2)x2-1 = 2x, so the answer to the the question given is: (2)x2-1 + (1)3x1-1 = 2x + 3
To integrate, you first add one to the power, and then divide the expression by the new value of the power for example: integrate(x2) = x2+1(1/3)So the answer to the question is: x2+1(1/3) + 3x1+1(1/2) = (1/3)x3 + (1/2)x2 + CRemember to add the constant of integration (C) and sometimes if we were to differentiate just a number, the expression would disappear and so we need to account for this in the integral.

Answered by Maths tutor

4643 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations x + y = 1 , x^2 -2xy+y^2=9


The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


Find the x co-ordinate of stationary point of the graph y=5x^3 +3x


A level Maths question - The graph of y=2sin(2x)+1 is rotated 360 degrees about the x-axis to form a solid. Find the volume enclosed by the curve, the co-ordinate axes and the line x=pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning