Differentiate and then integrate: x^2 + 3x

To differentiate, the rule is to bring the power down to the front and multiply the expression, then take one off the value of the power, for example: d/dx(x2) = (2)x2-1 = 2x, so the answer to the the question given is: (2)x2-1 + (1)3x1-1 = 2x + 3
To integrate, you first add one to the power, and then divide the expression by the new value of the power for example: integrate(x2) = x2+1(1/3)So the answer to the question is: x2+1(1/3) + 3x1+1(1/2) = (1/3)x3 + (1/2)x2 + CRemember to add the constant of integration (C) and sometimes if we were to differentiate just a number, the expression would disappear and so we need to account for this in the integral.

Related Maths A Level answers

All answers ▸

Let z=x+yi such that 16=5z - 3z*, What is z?


Solve the simultaneous equations: y-2x-4 = 0 (1) , 4x^2 +y^2 + 20x = 0 (2)


How do you find the stationary points of the curve with equation y=4x^3-12x+1


Work out the equation of the tangent at x = 3, knowing that f(x) =x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences