A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?

Recognise that the intial potential energy and kinetic energy at 10 m/s position should be identical due to the frictionless slope. 

mgh = 0.5mv2

10kJ = 0.5 x m x 102

10 000 = 0.5 x m x 100

50m = 10 000

m = 200 kg

Recognise that the weight of the rollercoaster is 200g which is equivalent to the vertical reaction force on the horizontal track.

The frictional force is given by the coefficient of friction multiplied by the vertical reaction force:

F = 200g 0.5 = 100g

The rollercoaster comes to rest when its energy is zero and all of the initial kinetic energy (at 10 m/s) has been dissipated by the frictional force. Therefore, we can write the work done by friction, W, in terms of the length of horizontal track, L and equate this to the kinetic energy:

W = L = 100g L = 10 000

L = 10 000 / 100g = 100 / g = 10.2m

The length of track needed is 10.2m

Answered by Daniel M. Maths tutor

3913 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In a geometric series, the first and fourth terms are 2048 and 256 respectively. Calculate r, the common ratio of the terms. The sum of the first n terms is 4092. Calculate the value of n.


Differentiate y = 2e^(2x+1)


Sketch y = 9x – 4x^3, showing where the curve crosses the x axis.


Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences