Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))

Radius = 1, therefore diameter = 2Let x be the length of one side of the square.Using Pythagoras,x2 + x2 = 222x2 = 4x = sqrt(2)Area of isosceles triangle = side of square * half side of square= sqrt(2) * sqrt(2)/2= 1Shaded area = area of circle - area of square= π(1)2 - sqrt(2)2 = π - 2 Answer = 1:π-2

Answered by Thomas H. Maths tutor

3128 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that 1+2+...+n = n(n+1)/2 for all integers n>0. (Hint: Use induction.)


find the integral of y=x^2 +sin^2(x) with respect to x between the limits 0 and pi


How can you integrate the function (5x - 1)/(x^(3)-x)?


Solve x^2 + x=12 by factorising


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences