Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))

Radius = 1, therefore diameter = 2Let x be the length of one side of the square.Using Pythagoras,x2 + x2 = 222x2 = 4x = sqrt(2)Area of isosceles triangle = side of square * half side of square= sqrt(2) * sqrt(2)/2= 1Shaded area = area of circle - area of square= π(1)2 - sqrt(2)2 = π - 2 Answer = 1:π-2

TH
Answered by Thomas H. Maths tutor

3921 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show, by counter-example, that the statement "If cos(a) = cos(b) then sin(a) = sin(b)" is false.


Integrate (x+3)^(1/2) .dx


Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning