Use calculus to find the set of values of x for which f(x) = x^3 - 9x is an increasing function.

f(x) is an increasing function when its gradient is positive. To find the the gradient of the the function we must differentiate it:d/dx f(x) = 3x2 - 9. To differentiate we multiply the exponent by the coefficient, then subtract one from the exponent, we repeat this for each term in the function.The second part of this problem is finding when this gradient is positive: i.e. when 3x2 - 9 > 0. This can be rearranged to 3x2 > 9; then x2 > 3. Which is true for any |x| > sqrt(3). Therefore x > sqrt(3) and x < -sqrt(3)

Related Maths A Level answers

All answers ▸

What is the equation of the curve that has gradient dy/dx=(4x-5) and passes through the point (3,7)?


Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.


Integral of (cos(x))^2 or (sin(x))^2


A spherical balloon of radius r cm has volume Vcm^3 , where V =4/3 * pi * r^3. The balloon is inflated at a constant rate of 10 cm^3 s^-1 . Find the rate of increase of r when r = 8.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences