Use calculus to find the set of values of x for which f(x) = x^3 - 9x is an increasing function.

f(x) is an increasing function when its gradient is positive. To find the the gradient of the the function we must differentiate it:d/dx f(x) = 3x2 - 9. To differentiate we multiply the exponent by the coefficient, then subtract one from the exponent, we repeat this for each term in the function.The second part of this problem is finding when this gradient is positive: i.e. when 3x2 - 9 > 0. This can be rearranged to 3x2 > 9; then x2 > 3. Which is true for any |x| > sqrt(3). Therefore x > sqrt(3) and x < -sqrt(3)

Related Maths A Level answers

All answers ▸

The sum of the first K natural numbers is 300. Find the value of K.


Find the tangent to the curve y=x^3+3 at the point x=1.


A ball is projected at an angle b from the horizontal. With initial velocity V the ball leaves the ground at point O and hits the ground at point A. If Vcos(b) = 6u and Vsin(b) = 2.5u, how long does the ball take to travel between O and A.


Integrate 1/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences