3n+2 <= 14 and 6n/(n^2+5) > 1 Find possible values of N

3n+2 is less then or equaled to 14. 6n divided by N squared + 5 is less then 1. First, we are going to deal with the equation on the left. From this equation, takeaway 2 from both sides to get 3n<=12, divide both sides by 3 to get n is less then or equaled to 4. So we now know n<=4. Now for the second equation, multiply the right side of the equation by (n^2+5), you then get 6n>n^2+5. Takeaway 6n from both sides to get 0>n^2-6n+5. Factorise n^2-6n+5 to get 0>(n-5)(n-1). So we now know that n is between 5 and 1 for the right equation. To satisfy both conditions of the left equation and the right equation, we know that n is less then or equaled to 4, and n is between 5 and 1. This means then n is greater then 1 and less then equaled to 4. So the possible values must be 2 3 and 4.

MA
Answered by MOHAMMAD A. Maths tutor

3148 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The first 4 terms of a different sequence are: 9, 13, 17, 21. Find an expression for the nth term of the sequence


How can you calculate the distance between 2 points in a grid if they're not on the same horizontal or vertical line?


Solve for x: 2x^2 + 2x -24 = 0


Solving quadratic equations using the factorisation method.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences