Differentiate with respect to x: x*cos(x)

Firstly, xcos(x) is a product of two functions of x. Therefore we can use the product rule to work out the derivative of the whole function. Differentiating each part makes it easier to visualize the formula. Splitting xcos(x) into u and v:u = xv = cos(x)du/dx = 1dv/dx = -sin(x) Now to apply the product rule - udv/dx + vdu/dx = cos(x) - x*sin(x)

Answered by Stefan S. Maths tutor

2530 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = (x^2 + 3)^2


Find the stationary point(s) on the curve 2xsin(x)


Differentiate x^3 − 3x^2 − 9x. Hence find the x-coordinates of the stationary points on the curve y = x^3 − 3x^2 − 9x


What is the normal distribution and how do I use it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences