You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.

X2n-1 = (xn+1)(xn-1) Therefore we can say 22n-1 = (2n+1)(2n-1) . As 2n is always even, a multiple of 3 is always either going to be 1 above or 1 below it, e.g. 3 is one below 4 and 9 is 1 above 8, therefore either (2n+1) or (2n-1) is going to be a multiple of 3, making the entire equation 22n-1 divisible by 3 as (2n+1) and (2n-1) are multiplied together, and they keep their factors.

Answered by Abraham L. Maths tutor

7499 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find integers A and B, such that (5x +4)/((2-x)(1+3x)) = A/(2-x) + B/(1+3x)


Find a solution for the differential equation dy/dx=exp(-y)*sin2x which passes through the origin.


The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.


In a geometric series, the first and fourth terms are 2048 and 256 respectively. Calculate r, the common ratio of the terms. The sum of the first n terms is 4092. Calculate the value of n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences