Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.

This exercise is interesting as it combines a variety of concepts fundamental to integration and maths in general. It also allows to introduce the student to the idea of recursion, very often used to solve mathematical and computational problems.Integration by parts will be used to solve the integral and to prove the recursive relation. Finally Such relation will be exploited to find the third element of the series. Solution will be provided on the whiteboard.

MC
Answered by Marco C. Maths tutor

2357 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you help me understand how Arithmetic sequences work?


Find the equation of the tangent to the curve y = 2 ln(2e - x) at the point on the curve where x = e.


How would I differentiate a function of the form y=(f(x))^n?


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences