A linear sequence starts a + 2b, a + 6b, a + 10b … The 2nd term has value 8 The 5th term has value 44 Work out the values of a and b.

5th Term is a+18b=442nd term is a+ 6b=8subtract the two equations from eachother to get 12b=36 rearrange so that b=36/12=3 substitute b=3 into any of the above equations to get a; a=8-(6x3) = -10 so a=-10 and b=3

Answered by Malini P. Maths tutor

2553 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you know when to add probabilities together and when to multiply them together


A ten-sided die with sides numbered 1-10 is thrown. What is the probability of throwing a 1?


Solve the Simultaneous equations '2x-3y=24' and '6x+2y=-5'


Show that (x + 1)(x + 3)(x + 5) can be written in the form ax^3 + bx^2 + c^x + d where a, b, c and d are positive integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences