A linear sequence starts a + 2b, a + 6b, a + 10b … The 2nd term has value 8 The 5th term has value 44 Work out the values of a and b.

5th Term is a+18b=442nd term is a+ 6b=8subtract the two equations from eachother to get 12b=36 rearrange so that b=36/12=3 substitute b=3 into any of the above equations to get a; a=8-(6x3) = -10 so a=-10 and b=3

MP
Answered by Malini P. Maths tutor

3066 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out the points of intersection of the graphs of y= (x+2)(x-4) and y=3x+6.


A cuboid has dimensions: width = x+1, length = 2x-2, height = x+2. Work out the volume of this cuboid. Give your answer in terms of x.


How is frequency density calculated?


Solve the equation x2-7x=-10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning