A function is defined as f(x) = x / sqrt(2x-2). Use the quotient rule to show that f'(x) = (x-2)/(2x-2)^(3/2)

u = x v = (2x-2)^(0.5)u' = 1 v' = (2x-2)^(-0.5)f'(x) = (vu' - uv') / v^2Therefore, f'(x) = (((2x-2)^(0.5) * 1) - (x * (2x-2)^(-0.5))) / ((2x-2)^(0.5))^2f'(x) = (2x - 2 - x) / (2x-2)^(3/2) = (x-2) / (2x-2)^(3/2)Would be easier to follow with the whiteboard function

Answered by Isaac F. Maths tutor

8372 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you prove that (3^n)-1 is always a multiple of 2?


Find the derivative of A^4 + 2A^2 - 3A + 4


Solve inequality: sqrt(x^2) + x < 1


Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences