Find dy/dx, given that y=(3x+1)/(2x+1)

Since the equation for y is given in the format y=u/v, the use of the quotient rule is the easiest way to find the differential of this equation. The quotient rule states, (vu'-uv')/v^2 is equal to the differential of u/vIn this situation u=3x+1 and v=2x+1. The first step to take would be to differentiate the individual parts of the equation so, u'=3 and v'=2.These 4 values can then be put into the quotient rule in order to reach the result of the differential. dy/dx=(3(2x+1)-2(3x+1))/(2x+1)^2, which can be simplified down to dy/dx=1/(2x+1)^2

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = 4x^2 (x+3)^5 at the point (-1, 128).


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


What is differentiation used for in the real world?


How would you solve the inequality x^2-2x-8 >= 0?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences