Find dy/dx, given that y=(3x+1)/(2x+1)

Since the equation for y is given in the format y=u/v, the use of the quotient rule is the easiest way to find the differential of this equation. The quotient rule states, (vu'-uv')/v^2 is equal to the differential of u/vIn this situation u=3x+1 and v=2x+1. The first step to take would be to differentiate the individual parts of the equation so, u'=3 and v'=2.These 4 values can then be put into the quotient rule in order to reach the result of the differential. dy/dx=(3(2x+1)-2(3x+1))/(2x+1)^2, which can be simplified down to dy/dx=1/(2x+1)^2

Answered by Maths tutor

5014 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for 0 =< x =< 360 16/(cos(x+25)+1) = 10, give answers to 2 d.p.


A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


How do I differentiate?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning