Given f(x) = (x^4 - 1) / (x^4 + 1), use the quotient rule to show that f'(x) = nx^3 / (x^4 + 1)^2 where n is an integer to be determined.

QUOTIENT RULE: [u(x) / v(x)]' = [u'(x)v(x) - u(x)v'(x)] / v2We have: u(x) = x4 - 1, hence u'(x) = 4x3v(x) = x4 + 1, hence v'(x) = 4x3So we have: [(4x3)(x4 + 1) - (4x3)(x4 - 1)] / (x4 + 1)2Expanding gives us: [4x7 + 4x3 - 4x7 + 4x3] / (x4 + 1)2Giving us a final answer of: [8x3] / (x4 + 1)2, and hence the integer n = 8

Answered by Thomas A. Maths tutor

2542 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does adding a constant to a function's input (as in f(x-a)) shift the plot of the function along the x-axis?


Find the maximum value of 2sin(x)-1.5cos(x)


Given that y = (( 4x + 1 )^3)sin(2x), find dy/dx.


y = 4x / (x^2 + 5). Find dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences