Given y = 9x + 1/x, find the values of x such that dy/dx=0

We are given y as a function of x, let's first compute dy/dx, and then solve the equation dy/dx =0. dy/dx = 9 -1/x2. Then dy/dx = 0 is equivalent to 9 = 1/x2. Taking x2 on the LHS and 9 on the RHS we obtain x2 = 1/9. Finally, the two values of x are -1/3 or 1/3.

Answered by Martin P. Maths tutor

3747 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate from 0 to 2: 2x*sqrt(x+2) dx


Prove by induction that, for n ∈ Z⁺ , [3 , -2 ; 2 , -1]ⁿ = [2n+1 , -2n ; 2n , 1-2n]


How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


How do you differentiate y=ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences