Given y = 9x + 1/x, find the values of x such that dy/dx=0

We are given y as a function of x, let's first compute dy/dx, and then solve the equation dy/dx =0. dy/dx = 9 -1/x2. Then dy/dx = 0 is equivalent to 9 = 1/x2. Taking x2 on the LHS and 9 on the RHS we obtain x2 = 1/9. Finally, the two values of x are -1/3 or 1/3.

Answered by Martin P. Maths tutor

3605 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent of the following curve, y=xe^x, at x=1 expressing it in the form y=mx+c?


f(x)=6/x^2+2x i) Find f'(x) ii) Find f"(x)


For the function f(x) = 4x^3 -3x^2 - 6x, find a) All points where df/dx = 0 and b) State if these points are maximum or minimum points.


How do I break down (x-2)/((x+1)(x-1)^2) into partial fractions?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences