Why does butan-2-ol have no effect on plane polarised light?

Butan-2-ol can be produced as a result of reducing butanone with NaBH4. The hydride ion in NaBH4 is used as a nucleophile which can attack the C on the (C=O )either above or below the plane, depending on the orientation of the double bond. A dative covalent bond is formed. The double bond (C=O) is broken as electrons are transferred to the oxygen, leaving it negatively charged. There is thus an electrostatic attraction between the O- ion and an H+ ion, ultimately producing butan-2-ol. As the nucleophile can attack from above or below the plane, there is an equal probability that each of the two enantiomers of butan-2-ol will be produced in equal amounts, thus generating a racemic mixture. Regardless of the chiral centre in butan-2-ol, the equal amounts of opposing enantiomers means they will rotate plane polarised light in different directions by the same amount - cancelling their individual effects. Butan-2-ol is therefore not optically isomeric in this instance.

Answered by Sunzida K. Chemistry tutor

5735 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

What is nucleophilic substitution and how can I draw a mechanism to show this reaction taking place?


Describe the process of electrophilic addition to an alkene in terms of sigma and pi bonds.


Which of Na+ and Mg2+ is the smaller ion. Explain your answer. (2 marks)


Explain in terms of bonding and structure the properties of graphite given that it is a good conductor, soft and has a very high melting point


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences