Show that arctan(x)+e^x+x^3=0 has a unique solution.

Since either sketching the function f(x)=arctan(x)+ex+x3 or evaluating the precise/approximated solutions of the equation would be impossible with A-level techniques, we have to come up with an "alternative method": the derivative one. First of all, we easily notice that the domain of the function is R and that it is continous on R (since it is a sum of continous functions). The derivative, which gives us the slope of the function, is f'(x)=1/(1+x2)+ex+3x2.
Now, 1/(1+x2)>0 for all x and so is ex. 3x2 is >=0 but when x=0 f(0)=2 so the derivative is always greater than 0. As a corollary of Lagrange's theorem, positive derivative implies strictly increasing function. Being f(x) continous and being the limit to -inf of f(x) = - inf and limit to +inf of f(x) = +inf, we can show that the function intersect the x-axis only once (Bolzano's theorem); therefore the given equation has a unique solution.

Answered by Maths tutor

3024 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of A^4 + 2A^2 - 3A + 4


Find the coordinates of the stationary point of y = x^2 + x - 2


Solve the equation tanx/cosx = 1 for 0°<x<360°


(i) Prove sin(θ)/cos(θ) + cos(θ)/sin(θ) = 2cosec(2θ) , (ii) draw draph of y = 2cosec(2θ) for 0<θ< 360°, (iii) solve to 1 d.p. : sin(θ)/cos(θ) + cos(θ)/sin(θ) = 3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences