Show that arctan(x)+e^x+x^3=0 has a unique solution.

Since either sketching the function f(x)=arctan(x)+ex+x3 or evaluating the precise/approximated solutions of the equation would be impossible with A-level techniques, we have to come up with an "alternative method": the derivative one. First of all, we easily notice that the domain of the function is R and that it is continous on R (since it is a sum of continous functions). The derivative, which gives us the slope of the function, is f'(x)=1/(1+x2)+ex+3x2.
Now, 1/(1+x2)>0 for all x and so is ex. 3x2 is >=0 but when x=0 f(0)=2 so the derivative is always greater than 0. As a corollary of Lagrange's theorem, positive derivative implies strictly increasing function. Being f(x) continous and being the limit to -inf of f(x) = - inf and limit to +inf of f(x) = +inf, we can show that the function intersect the x-axis only once (Bolzano's theorem); therefore the given equation has a unique solution.

Answered by Maths tutor

3635 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle


f(x) = (4x + 1)/(x - 2) with x > 2. Find a value for 'x' such that f'(x) (first derivative of f(x) with respect to x) is equal to -1.


Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1


A radio sells for £63, after a 40% increase in the cost price. Find the cost price.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning