Find the turning points on the curve with the equation y=x^4-12x^2

y = x^4 - 12x^2
dy/dx = 4x^3 - 24x
The turning points are where dy/dx = 0
4x^3 - 24x =0
x(4x^2 - 24) = 0 Therefore one of the turning points is at x = 0
4x^2 - 24 = 0
4x^2 = 24
x^2 = 6
x = +/- √6
Substitute the x coordinates back into the original equation to find y
The final coordinates are (0,0), (√6,-36) and (-√6,-36)

Related Maths A Level answers

All answers ▸

Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


How would you differentiate and integrate 2x^3?


how do i sketch the graph of y=ln(|x|) ?


A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences