Given that 2log2(x+15) -log2(x) = 6, show that x^2-34x+225=0

As we know nlog(a) is the same as log(a)^n, we can rearrange the equation to log2(x+15)^2 -log2(x) = 6. Also, we know that log(a) - log(b) is equal to log(a/b), so we can further rearrange the equation to log2((x+15)^2)/x) = 6. Another law of logarithms states to find a, when logx(a) = b , a = x^b. Thus, the equation becomes ((x+15)^2)/x) = 2^6Now we can simplify this equation. Opening the brackets of the numerator gives us x^2 +30x +225, all of which is divisible by x. 2^6 = 64. Because (x^2 +30x +225)/x = 64 we can multiply everything by x, giving us x^2 +30x +225 = 64xNow to rearrange it in the format the question asks, we can take 64x away from both sides, leaving us with x^2 -34x +225 = 0

Answered by Rafey A. Maths tutor

10574 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve y = 5(x^2} - 2x + 3 when x = 4


Integrate ((7e^(x/2))/4) with respect to x within the bounds of x=0 and x=2. (Basic introduction to definite integration)


Why does 'x' need to be in radians to differentiate 'sin x'?


Find the derivative and following function and hence find the value of coordinates for when the function is at a stationary point:


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences