Work out the equation of the tangent at x = 3, knowing that f(x) =x^2

Currently, we know that:f(x) = x2To find the equation of the tangent you need the gradient and the y-value of the graph at x = 3So, you can differentiate f(x):f'(x) = 2xlet x = 3: f(x) = 9 f'(x) = 6the equation of the line is written by:y - y1 = m(x-x1)By substitution:y - 9 = 6(x - 3)y = 6x - 9 --> this is the answeri do have a laptop with a touch screen and a pen, so it is easy for me to write

Answered by Arnav A. Maths tutor

2474 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5


Integrate (3x^2-x^3)dx


Why does differentiation give us the results that it does?


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences