The equation of line L is y = 3x - 2 and the equation of line Q is 3y - 9x + 5 = 0, show these two lines are parallel

The basic equation of a line is I=the general form y = mx + c. Where c is a constant and m is the gradient of the lineFor lines to be parallel they must have the same gradient, then they will never crossThe gradient for line L is therefore 3, as this is the number in front of xBy rearranging the equation of line Q to fit the general form we find that:3y = 9x - 5y = 3x - (5/3)Therefore line Q also has the same gradient and is thus parallel

Answered by Harry H. Maths tutor

2575 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 5x + 3y = 41 and 2x + 3y = 20 Do not use trial and error.


Factorise 2x^2 - 7x -4


We have 2 spinners: spinner A and spinner B. Spinner A can land on 2, 3, 5 or 7. Spinner B can land on 2, 3, 4, 5 or 6. Spin both. Win if one spinner lands on odd and the other lands on even. Play game twice, what is the probability of winning both games?


How do I solve these two equations simultaneously: 7x+y=1 and 2x^2 - y = 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences